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ABSTRACT
Purpose The purpose of the study is to develop a method to estimate the duration of single prescriptions in pharmacoepidemiological
studies when the single prescription duration is not available.
Methods We developed an estimation algorithm based on maximum likelihood estimation of a parametric two-component mixture model
for the waiting time distribution (WTD). The distribution component for prevalent users estimates the forward recurrence density (FRD),
which is related to the distribution of time between subsequent prescription redemptions, the inter-arrival density (IAD), for users in contin-
ued treatment. We exploited this to estimate percentiles of the IAD by inversion of the estimated FRD and defined the duration of a prescrip-
tion as the time within which 80% of current users will have presented themselves again. Statistical properties were examined in simulation
studies, and the method was applied to empirical data for four model drugs: non-steroidal anti-inflammatory drugs (NSAIDs), warfarin,
bendroflumethiazide, and levothyroxine.
Results Simulation studies found negligible bias when the data-generating model for the IAD coincided with the FRD used in the WTD
estimation (Log-Normal). When the IAD consisted of a mixture of two Log-Normal distributions, but was analyzed with a single
Log-Normal distribution, relative bias did not exceed 9%. Using a Log-Normal FRD, we estimated prescription durations of 117, 91, 137,
and 118 days for NSAIDs, warfarin, bendroflumethiazide, and levothyroxine, respectively. Similar results were found with a Weibull FRD.
Conclusions The algorithm allows valid estimation of single prescription durations, especially when the WTD reliably separates current
users from incident users, and may replace ad-hoc decision rules in automated implementations. Copyright © 2016 John Wiley & Sons, Ltd.
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INTRODUCTION

A key question in pharmacoepidemiological analyses
is how to define the exposure duration that should be
assigned to a prescription. While in some databases,
the single prescription duration is recorded directly;
this is lacking in many data sources. When using such
data sources, it is necessary to decide on the duration
that should be assigned to single prescriptions. Even
when duration is recorded, it may not coincide with
the actual use pattern of the drug, and it will be useful
to have a method for assigning treatment durations, if
only for validation purposes. While decision rules

can be based on available clinical insights for some
medications and patient groups, they will often have
to be developed from observed prescription renewals.
The waiting time distribution (WTD) has been
suggested as a tool in this context.1,2 The WTD is a
charting of how long one has to wait before a user
redeems his first prescription within a given time
window. Its primary advantage is that it separates all
users of a drug into two categories, those in current
active use, that is, prevalent users, and those who ini-
tiate use, that is, incident users.1,3 Pottegård and Hallas
suggested defining a decision rule for the duration of a
prescription based on a cutoff for when a certain
percentage of prevalent users had redeemed their first
prescription after the start of the observation window.2

As an alternative to the WTD, one can choose a
cutoff for the inter-arrival density (IAD). This function
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describes the distribution of distances (e.g., in days)
between two subsequent prescriptions for a given drug
among all its prevalent users. Although the two distri-
butions (WTD and IAD) are related, they are markedly
different. The prevalent component of the WTD is the
so-called forward recurrence density (FRD), which is a
mathematically known transformation of the IAD. As
the incident component of the WTD is more or less
uniform, the WTD has its modus at the beginning of
the observation window, where the FRD also has its
modus. In contrast, the IAD will in realistic scenarios
have its mode sometime after the preceding prescrip-
tion, that is, the next prescription redemption is more
likely to occur sometime later rather than immediately
after the preceding redemption. When placed on the
same timescale, the IAD is thus right-shifted relative
to the WTD, and any cut-point defined by a percentile
is higher for the IAD than for the WTD. Intuitively,
the IAD may seem as a more appropriate tool to define
duration of exposure for a single prescription, because
it directly shows the probability of a new prescription
appearing, as a function of time.
We first provide basic formulas based on renewal

process theory from which we develop a new algo-
rithm for defining duration of a prescription based on
a parametric WTD model. We then describe how to
transform a parametric WTD into a parametric IAD,
which makes the FRD component of the WTD corre-
sponds to the same underlying renewal processes as
the IAD. Next, we provide simulation results to ex-
plore the magnitude of bias associated with the
parametric WTD model. We specifically investigate
how the simple parametric WTD performs when there
are two different subpopulations of users for the same
drug, or when users switch between two different
package sizes. Finally, we apply the parametric IAD
distribution to the specific problem of defining
duration of a single prescription in the same four
model drugs as studied by Pottegård and Hallas:
bendroflumethiazide, warfarin, levothyroxine, and
non-steroidal anti-inflammatory drugs (NSAIDs).2

METHODS

For illustrative purposes, let us first consider a single
patient with prescription redemptions at T1, T2, … .
Let Di=Ti + 1�Ti be time from prescription redemp-
tion i to the next i+1 redemption, and assume that Di
follows the continuous distribution F with density
function f (the so-called inter-arrival distribution) and
mean M. Further, we assume that all Dis are indepen-
dent and identically distributed. This implies that the
sequence of Tis form a renewal process. Let us next

assume that we intercept this renewal process at some
random time point t0 at a time where the process has
stabilized, that is, that the starting point is so far into
the distant past that it does not matter for the current
process. Alternatively, we can assume that the patient
initiated treatment at a random point in time following
a constant rate. The time from the interception point t0
to the next redemption is then a so-called forward
recurrence time R=min(Ti|Ti> t0)� t0 with a distribu-
tion characterized by the following density function

g rð Þ ¼ 1� F rð Þ
M

The shape of this density is a consequence of length
biased sampling (i.e., that longer intervals between
redemptions have a proportionately higher probability
of being sampled) and the interception point being
uniformly distributed on intercepted intervals.
When we consider the inter-arrival distribution, F,

we can define the time point τk for which there is k%
chance of a patient redeeming a new prescription
before that time. Mathematically, τk will then have to
satisfy the following equation:

∫
τk

0
f sð Þds ¼ k%

Note that τk is not in general equal to the time point
in the forward recurrence distribution at which there is
k% chance of observing a smaller forward recurrence
time, that is, the τk ’ defined from the following equa-
tion is not in general equal to τk:

∫
τk ’

0

1� F rð Þ
M

dr ¼ k%

where τk ’ is the percentile considered by Pottegård and
Hallas.2 The two percentiles, τk and τk ’, are only equal
when F is an exponential distribution with a constant
rate. The exponential distribution has identical IAD
and FRD because of its memoryless property, which
implies that the subsequent redemption should occur
with a constant rate, that is, regardless of the time since
last prescription redemption. This is a rather unrealistic
assumption for most processes of actual prescription
redemptions.
To illustrate the difference between the two percen-

tiles of the IAD and the FRD, respectively, we may
consider a Log-Normal inter-arrival distribution with
a mean of 90days and a SD of 30days. The parameters
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of the Log-Normal distribution are related to the mean,
M, and variance, V, of the IAD by the formulas4:

M ¼ exp μþ σ2
2

� �
, and V= (eσ2�1)exp(2μ+ σ2)

By inversion of these formulas, the log-mean of the
distribution is given by log(902/√ (302+902))=4.447

and the variance on the log-scale by log 1þ 302

902

� �
¼

0:105. We can find the 80th percentile of this distri-
bution by looking up the value in a standard normal
distribution and re-transform. This yields us a value
of the 80th percentile for the IAD of 112.1days, that
is, 80% of all prevalent users will have a new pre-
scription within 112.1days of their previous redemp-
tion. If instead we were to base it on the percentile
of the corresponding forward recurrence distribution,
as suggested by Pottegård and Hallas,2 we would
obtain the value 78.2days, compare with Figures 1
and 2.
From the formulas presented earlier, it is evident

that we can actually obtain the percentile τk for the
inter-arrival distribution F from the FRD g(t). Further,
note that the density g(t) is the component associated
with prevalent users, which is directly estimated in
the parametric version of the WTD approach.3 From
the density g(t), we can find τk as the time t that fulfils
the following equality:

M �g tð Þ ¼ 100%� k%

Solving this equation can be carried out either ana-
lytically or numerically after estimation of g(t), and
by noting that with an estimate of the parameters of
the density g(t), M is implicitly defined.

The algorithm we propose for estimating τk there-
fore consists of three steps:

(1) Obtain a parametric estimate of the WTD, specif-
ically the parameters of the distribution compo-
nent g(t), which corresponds to prevalent users.

(2) Estimate M from the parameters of g.
(3) Find the time τk as the time t, such that M �g(t) =

(100%� k%).

To mimic the setting of the original paper by
Pottegård and Hallas2 as closely as possible, we used
a version of the parametric WTD, which does not ac-
count for censoring, that is, it only considers observed
prescription redemptions. With a uniform density for
the incident component of the WTD, the likelihood
contribution for a single individual is then given by

L t; γ; θð Þ ¼ γ�g t; θð Þ þ 1� γ
δ

where γ is the fraction of prevalent users among the ob-
served users in the observation window, δ is the width
of the observation window, and g(t;θ) is the FRD for
prevalent users, which depends on parameters θ. In this
paper, we consider two parametric distributions, Log-
Normal and Weibull, which are parameterized as
follows:

1. Log-Normal FRD: g tð Þ ¼ 1
M Φ logt�μ

σ

� �
where Φ is

the cumulative standard normal distribution func-

tion and M is the inter-arrival mean given by M ¼
exp μþ σ2

2

� �
:The kth percentile of the inter-arrival

distribution is given by τk=exp(Φ� 1(k) �σ +μ)
2. Weibull FRD: g tð Þ ¼ 1

M exp � β�tð Þαð Þwhere M is
the corresponding inter-arrival mean given by

Figure 1. Density for a Log-Normal inter-arrival distribution with a mean
of 90 days and a standard deviation of 30 days

Figure 2. Forward recurrence density for a Log-Normal inter-arrival dis-
tribution with a mean of 90 days and a standard deviation of 30 days
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M ¼ 1
β Γ 1þ 1

α

� �
and where Γ is the Gamma func-

tion defined by Γ tð Þ ¼ ∫
∞

0
xt�1e�x dx . The kth per-

centile of the inter-arrival distribution is given by
τk ¼� 1

β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 1� kð Þα

p

To improve convergence and stability of the
maximum likelihood estimation procedure, we log-
transformed the parameters σ, α, and β, as they are
required to be larger than zero by definition. We
logit-transformed γ. This is similar to a previous imple-
mentation of estimation for the parametric WTD.3

SIMULATION STUDIES

Scenario 0: Single inter-arrival density—one type of
patients

Imagine a situation where all patients are treated with
the same package size and where they all have the
same distribution of time from one prescription re-
demption to the next.

Scenario 1: Two-component mixtures—two types of
patients

Imagine a situation in which patients are treated with a
medication, but they consist of two groups, for exam-
ple, due to two different package sizes: One group of
patients redeems 30 pills a time, the other group 90
pills. With an average dose of 1 pill per day, we would
expect redemptions to occur either 30 or 90days apart
for each of the two groups. If we assume that patients
are of either one or the other kind without changing
status over the course of treatment, then the density
of a randomly selected patients’ time from one pre-
scription redemption to the next is given by

f ̃ tð Þ ¼ p1�f 1 tð Þ þ 1� p1ð Þf 2 tð Þ
Here, f1(t) is the density of the first group, f2(t) for

the other group, and p1 is the prevalence of the first
type of users. Note, however, that this is different from
the marginal IAD after a randomly selected prescrip-
tion, because patients redeeming smaller packages will
contribute more redemption over the same amount of
time and will therefore have a higher chance of being
sampled. The FRD is in this situation given by

g tð Þ ¼ p1
1� F1 tð Þ

M 1
þ 1� p1ð Þ 1� F2 tð Þ

M 2

where M1 is the mean of the distribution F1, that is,
30days, and M2 is the mean of F2, that is, 90days.

From this FRD, we can obtain the following formula
for the marginal IAD as

f tð Þ ¼ λ�f 1 tð Þ þ 1� λð Þf 2 tð Þ
where

λ ¼ p1�M 2

p1�M 2 þ 1� p1ð ÞM 1

From this, it can be seen that if M1<M2 then λ>p1,
that is, a higher representation of shorter intervals in
the IAD. In the simulation studies, we used p1=0.7.

Scenario 2: Two-component mixtures—one type of
patients

Here, we imagine a situation where patients are treated
with a medication in two different package sizes and
that each time a prescription redemption occurs there
is probability π1 of redeeming a package of size 30,
that is, the density for time to next prescription is f1
(t), and probability (1�π1) for redeeming a package
of size 90 (density for time to next prescription is f2
(t)). Then the density of the time from one prescription
to the next is given by

f tð Þ ¼ π1�f 1 tð Þ þ 1� π1ð Þf 2 tð Þ
In this scenario, the FRD is given by

g tð Þ ¼ π1 1�F1 tð Þð Þþ 1�π1ð Þ 1�F2 tð Þð Þ
π1�M1þ 1�π1ð ÞM2

which may be rewritten

as

g tð Þ ¼ π�1
1� F1 tð Þ

M1
þ 1� π�1
� � 1� F2 tð Þ

M 2

where π�1 ¼ π1�M 1= π1�M 1 þ 1� π1ð ÞM 2ð Þ . In other
words, the mixing probability in the forward recur-
rence distribution is weighted by the mean inter-arrival
timeM1 of the first component, F1, relative to the over-
all mean of the marginal inter-arrival distribution. In
the simulation studies, we used π1=0.7.

Setup for simulation studies

In all scenarios, we assume that treatment onset occurs
with a constant rate and that the WTD on average con-
sists of 25% incident users and 75% prevalent users
within a 1-year observation window, that is, the true
value of γ was set to 0.75. The FRD of prevalent users
is assumed to either correspond to a single Log-Normal
distribution for the inter-arrival times (Scenario 0), a
branching process of two patient groups each with a
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Log-Normal distribution for the inter-arrival times
(Scenario 1), or a single type of patients with a two-
component mixture density for inter-arrival times,
where each component follows a Log-Normal distribu-
tion (Scenario 2). The first component distribution has
a median value of 1.5months (45days) in all settings,
except when used on its own in Scenario 0, where in
addition we consider a median value of 3months
(90days). The second component distribution either
has a median of 2 (60days) or 3months (90days).
The variation of the first component distribution is
always such that its central 95% range is a factor of
1.5 on either side of the median, that is, the 97.5%
percentile of the density is 1.5 times the median. For
the second component, the corresponding variation
factor is either 1.5 or 2. An overview of the distribu-
tions can be seen in Figure 2a, b, and c in the
Supporting Information. It should be noted that despite
the difference in setup between scenario 1 and 2, the
type of the generated WTD will be the same—indeed,
adequately chosen parameters for scenario 1 will
produce a WTD identical to that of scenario 2, and vice
versa.
We study each simulation setting with three differ-

ent sample sizes (n=1, 000;n=5, 000; or n=20, 000),
where n is the number of patients with a prescription
redemption. For each setting, we generate 2,500
datasets. We used the algorithm proposed by Zhao to
generate samples from Log-Normal FRDs.5 The pa-
rameters of the Log-Normal distribution were derived
from the specified median and variation factor as fol-
lows: μ= log(Median), and σ = log(Variation factor)/
Φ� 1(.975)
All generated datasets are subsequently analyzed

using a parametric WTD approach with a uniform den-
sity for the incidence component and a Log-Normal
FRD for the prevalent component. For each setting,
we estimate the relative bias in estimates of τ80%, its
empirical standard deviation and the root mean square
error (RMSE) around the true value.

APPLICATION

We analyze the same four model drugs as Pottegård
and Hallas: NSAIDS, warfarin bendroflumethiazide
and levothyroxine.2 For each of the four drugs, we
analyze two samples: The first sample consists of all
the first prescriptions of users in 2009 redeemed in
the Region of Southern Denmark (1.2 million inhabi-
tants) and thereby captured in Odense Pharma-
coepidemiological Database.6 In the second sample,
we only consider the first prescription of a user in
2009, if the same user also redeemed a prescription

for the same type of drug in 2008, because this re-
striction was suggested by Pottegård and Hallas.2

The indication, dosage, and refill instruction are not
recorded in OPED, and thus, the duration of a pre-
scription is not directly observable. This is even more
so, because in Denmark no upper limit exists for the
amount of a drug, which can be prescribed in a single
prescription.
All statistical analyses were conducted in Stata

14.1.7 A dedicated software package (wtd_perc)
implementing the method is provided at the IDEAS re-
pository (http://ideas.repec.org) and may be installed
in Stata using a search for the package name, that is,
–search wtd_perc, all–.

RESULTS

Simulation studies

Results of the simulation study are shown in Table 1.
When the WTD was analyzed with the correct model
corresponding to a single Log-Normal distribution for
inter-arrival times, the relative bias was negligible
(�0.20% to 0.01%) regardless of sample size and
amount of variation in the inter-arrival distribution.
Precision of the estimate increased with sample size
and with 20, 000 observations the RMSE was
0.61days, which indicates that the 80% percentile of
the inter-arrival distribution can be estimated within
approximately ±1day of the true value with 95% confi-
dence, when the FRD is correctly specified.
For both of the other two simulation scenarios, the

relative bias was smallest when the two densities
governing the inter-arrival distribution had medians
closer to each other (1.5 and 2months). The largest rel-
ative bias of 8.14% was seen for the branching process
(Scenario 1) where the second type of distribution had
a median of 3months and a variation factor of 2. For
the two-component distribution (Scenario 2), the nu-
merically largest relative bias of �5.93% (n=1000)
was seen when the second distribution had a median
of 3months and a variation factor of 1.5. Because the
empirical standard deviations of the estimates were
rather similar across all eight settings in Scenarios 1
and 2, variations in the magnitude of the RMSE were
dominated by variation in the bias. The largest RMSEs
thus occurred together with the largest relative biases
but did not in any of the settings exceed 6days. Esti-
mates in all settings closely followed a normal distri-
bution, which suggests that confidence intervals can
be validly obtained by normal approximation and a
bootstrap estimate of the standard error (graphs not
shown, available from the first author upon request).
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Empiric studies

When the parametric WTD was applied to the 2009
data for the four model drugs in the unrestricted sam-
ple, we found 80th percentiles that were substantially
larger than those previously reported by Pottegård
and Hallas, except for NSAIDs (Table 2). The esti-
mated percentiles were largely unaffected whether the
FRD was taken to be Log-Normal or Weibull, again
with NSAIDs as the exception.
For warfarin, bendroflumethiazide and levothyroxine

the parametric WTD can be expected to reliably sepa-
rate the two components of the WTD corresponding
to prevalent and incident users. This is supported by
the results for the restricted sample of users, where
we required patients to also have redeemed a prescrip-
tion in 2008. With the parametric WTD, estimated
percentiles were almost identical in the restricted and
unrestricted sample. This is a consequence of the
observation that the restricted sample for warfarin,
bendroflumethiazide, and levothyroxine may reason-
ably be considered a prevalent sample. For NSAIDs,
the differences were more pronounced between esti-
mates from the restricted and unrestricted sample,
although still much more similar to each other than to
the estimate of Pottegård and Hallas.2

DISCUSSION

In settings with a substantial component of prevalent
use of a drug, the proposed parametric WTD can reli-
ably estimate the time at which a given proportion of
users in continued treatment will have redeemed a
new prescription after their previous prescription, that
is, it can be used to estimate a percentile of their
inter-arrival distribution. When a substantial propor-
tion of patients use a drug intermittently, the method
becomes more dependent on choice of parametric
model, and hence less robust, although it seems to pro-
vide more reliable estimates of inter-arrival distribu-
tion percentiles than the previously suggested method
based on the WTD.2

The primary advantage of the method is that it pre-
sents an opportunity to assign duration exposure to pre-
scriptions with an automated algorithm based on
observed prescription redemption patterns. Further,
the assigned duration has a straightforward interpreta-
tion based on a mathematically sound model and with
valid estimates of uncertainty, that is, confidence inter-
vals. Our simulation study showed that the estimation
was unbiased when the specified model was correct,
that is, when it coincided with the model used to gener-
ate the data analyzed in simulations. Even when the

Table 2. Estimated 80th percentile for prescription duration for four different model drugs: NSAIDS, warfarin, bendroflumethiazide and levothyroxine

2008 as run-in
period? Drug Parametric model n

Parametric WTD 80th
percentile (days)

PH2013 80th
percentile (days)*

Relative
difference (%)†

No NSAID Log-Normal 182 909 116.5 (113.5; 119.5) 210 80.3
No NSAID Weibull 182 909 130.1 (127.2; 133.1) 210 61.4

No Warfarin Log-Normal 17 777 91.2 (89.3; 93.1) 69 �24.3
No Warfarin Weibull 17 777 91.4 (89.6; 93.2) 69 �24.5

No Bendroflumethiazide Log-Normal 3822 137.0 (130.5; 143.9) 92 �32.9
No Bendroflumethiazide Weibull 3822 137.5 (129.2; 146.3) 92 �33.1

No Levothyroxine Log-Normal 24 178 118.3 (116.6; 120.0) 86 �27.3
No Levothyroxine Weibull 24 178 117.7 (116.1; 119.3) 86 �26.9

Yes NSAID Log-Normal 70 989 111.4 (109.3; 113.5) 210 88.5
Yes NSAID Weibull 70 989 116.3 (114.2; 118.4) 210 80.5

Yes Warfarin Log-Normal 13 756 90.0 (88.3; 91.7) 69 �23.3
Yes Warfarin Weibull 13 756 90.2 (88.6; 91.8) 69 �23.5

Yes Bendroflumethiazide Log-Normal 2483 132.6 (128.0; 137.5) 92 �30.6
Yes Bendroflumethiazide Weibull 2483 133.1 (128.0; 138.5) 92 �30.9

Yes Levothyroxine Log-Normal 21 245 116.9 (115.5; 118.3) 86 �26.4
Yes Levothyroxine Weibull 21 245 116.5 (115.0; 118.0) 86 �26.2

WTD, waiting time distribution; NSAIDs, non-steroidal anti-inflammatory drugs.
The WTD used either a Log-Normal or a Weibull forward recurrence density for the prevalent component, whereas the incident component was modelled with
a uniform distribution. When 2008 was used as run-in period, the analyzed WTD sample was restricted to users who also redeemed a prescription in 2008.
Confidence intervals were obtained with a bootstrapped SE based on 50 samples.
*Estimated percentiles reported by Pottegård and Hallas.2
†The relative difference between the Pottegård and Hallas2 estimate and the estimate based on the parametric WTD.

determining prescription durations 1457

Copyright © 2016 John Wiley & Sons, Ltd. Pharmacoepidemiology and Drug Safety, 2016; 25: 1451–1459
DOI: 10.1002/pds



data-generating model differed markedly from the
fitted model, the relative bias was tolerable as it did
not exceed 8%. If the inter-arrival distribution had
more than two modes, the corresponding WTD would
be smoothed further, and the scenarios with two modes
may therefore be considered the most extreme case. In
our application of the method to four model drugs, we
found that the method robustly estimated the 80th
percentile of the inter-arrival distribution for drugs
with a substantial component of prevalent use, irre-
spective of choice of parametric model (Log-Normal
or Weibull), and regardless of whether the sample
was restricted to users with a prescription in the previ-
ous year or not. Our approach may thus obviate the
need for a 1-year run-in period, as used by Pottegård
and Hallas, which is useful when using data sources
with substantial annual exchange of population.
The main weakness of the model is shared with the

original approach of Pottegård and Hallas2 as it does
not allow for incorporation of individual characteris-
tics of the patient such as past patterns in prescription
redemptions or current dose redeemed. Also, it re-
quires the WTD to be able to reliably separate users
into two categories of current users, prevalent users
and incident users initiating treatment, as was also
the case for the method by Pottegård and Hallas.2 It
is therefore less useful for drugs with substantial inter-
mittent use, although our finding of nearly identically
estimated percentiles from the restricted and unre-
stricted sample may indicate that the parametric
WTD is to some extent better at identifying the preva-
lent component of the WTD than the Pottegård and
Hallas approach. The larger estimate of Pottegård
and Hallas for NSAIDs may be a consequence of
misclassifying users as being prevalent on 1 January
2009, whenever they had a prescription in 2008—
likely many who were users at some point during
2008 will have stopped their use of NSAIDs before
the end of the year. When these users then reinitiate
treatment in 2009, it will appear to be from a prevalent
user, and the Pottegård and Hallas method will overes-
timate the percentile of interest, despite its inherent
theoretical tendency to underestimate. When there is
substantial intermittent use, the parametric WTD ap-
proach does become more sensitive to choice of para-
metric distribution, as it is difficult to separate the
uniform distribution for incidence from a slowly de-
clining FRD for prevalence in the NSAID example
(graph not shown, available upon request). As with
all parametric methods, the fit of the model to the
observed data determines the amount of bias. In the
simulation studies, the highest bias was generally seen,
when data were generated from with two distinctively

different subdistributions of the FRD. In applications,
it is therefore important to inspect visually the empiri-
cal WTD to see if there is a clear uniform part towards
the end of the observation window and a smoothly de-
clining part in the beginning. This follows suggestions
based on previous simulation studies for the paramet-
ric WTD.3

Studies have shown that choice of prescription
duration influences apparent duration of treatment
episodes and estimated risk associated with exposure.
McMahon et al. showed how different lengths of ex-
posure periods assigned to NSAID prescriptions led
to relative risk estimates for gastrointestinal hemor-
rhage varying from 2.16 to 5.82.8 While they argued
for not letting exposure periods exceed prescription
durations, they did not provide guidance for choosing
adequate prescription durations. Gardarsdottir et al.
showed that varying the length of prescription dura-
tions for selective serotonin reuptake inhibitors could
double the median antidepressant treatment episode
length.9 No optimal approach has, however, been
identified, and consequently, sensitivity analyses re-
main the recommended approach because it allows
exploration of the robustness of results with respect
to varying prescription durations.10,11

When the parametric WTD is used to estimate a per-
centile of the IAD among continued users, it may be
viewed as putting an upper limit on the misclassifica-
tion of continued users: With a prescription duration
defined from the 80th percentile, 20% of continued
users will mistakenly be classified as having stopped
use. Such considerations may help inform the choice
of which percentile to estimate, because different
levels of misclassification may be desired in different
applications. Potentially, the choice of a large percen-
tile, say 95%, may obviate the need for grace periods,
although at the cost of increasing misclassification of
stopped users as having continued use. The amount
of misclassification of stopped users from such an ap-
proach is not known and should be investigated in
future studies.
As the method is based on a parametric model and

maximum likelihood estimation, it should in principle
be possible to extend it with incorporation of covari-
ates of interest. In many applications, information on
package size is available, and likely, this will be
informative about the duration to the next prescription
redemption. The package size of prescriptions consid-
ered in the WTD information will, however, not be di-
rectly informative of the WTD, because it will be the
size of the previous prescription redemption that af-
fects the shape of the WTD. How to incorporate this
merits further research but is beyond the scope of the
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present paper. The estimate provided here is a mar-
ginal population estimate, but estimates may be ob-
tained for subgroups defined by gender and/or age
categories. Further, as the method provides an uncer-
tainty estimate of the estimated percentile, it should
be investigated how this could be incorporated in sub-
sequent analyses relying on the estimated value of the
percentile.
In conclusion, we suggest that the parametric WTD

may be used to estimate percentiles of the distribution
of time between subsequent prescription redemptions
for continued use of a drug and that this can be used
in an automated fashion to assign exposure duration
to prescriptions in pharmacoepidemiological research.
Future studies should consider how to improve robust-
ness of the method by incorporating the observed
distribution time between subsequent prescription re-
demptions and information on characteristics of the
patient and the redeemed prescription.
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KEY POINTS
• Many pharmacoepidemiological databases do
not record information on prescription duration

• No optimal decision rules exist for determining
prescription durations.

• Maximum likelihood estimation of the waiting
time distribution allows reliable estimation of
the 80th percentile of the inter-arrival distribution
(time between subsequent prescription redemp-
tions) in situations where most users are preva-
lent users.

• The method does not require information on re-
demptions in a preceding period and may be
automated.

• A package (wtd_perc) for estimation within Stata
is available for download.
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