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Abstract

Objectives: In many prescription databases, the duration of treatment for the single

prescription is not recorded. This study aimed to validate 2 different types of

approaches for estimating prescription durations, using the oral anticoagulant warfa-

rin as a case.

Methods: The approaches undergoing empirical validation covered assumptions of

a fixed daily intake of either 0.5 or 1.0 defined daily dose (DDD), as well as estimates

based on the reverse parametric waiting time distribution (rWTD), with different sets

of covariates. We converted estimates of prescription duration to daily dose and com-

pared them to prescribed daily dose as recorded in a clinical registry (using Bland‐Alt-

man plots). Methods were compared based on their average prediction error

(logarithmic scale) and their limit of agreement ratio (ratio of mean error ± 1.96 SD

after transformation to original scale).

Results: Estimates of daily doses were underestimated by 19% or overestimated by

62% when assumptions of 0.5 or 1.0 DDD were applied. The limit of agreement ratio

was 6.721 for both assumptions. The rWTD‐based approaches performed better

when using the estimated mean value of the inter‐arrival density, yielding on average

negligible bias (relative difference of 0 to 2%) and with limit of agreement ratios

decreasing upon additional covariate adjustment (from 6.857 with no adjustment to

4.036 with the fully adjusted model).

Conclusions: Comparing the different methods, the rWTD algorithm performed

best and led to unbiased estimates of prescribed doses and thus prescription dura-

tions and reduced misclassification on the individual level upon inclusion of

covariates.
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KEY POINTS

• We empirically validated 2 different approaches for

estimating prescription durations, using warfarin as a

case and data on prescribed dose from a clinical

registry as “gold standard”.

• The reverse parametric waiting time distribution (rWTD)

approach showed less bias and higher precision

compared to methods that assumed a fixed daily dose.

• The rWTD approach yielded virtually unbiased overall

estimates when using the mean value of the inter‐

arrival density. Furthermore, misclassification on the

individual level was reduced when covariates were

included.

• Future use of the rWTD method in

pharmacoepidemiological studies will prove its utility.

2 THRANE ET AL.
1 | INTRODUCTION

A common challenge in pharmacoepidemiology is the lack of valid

information from prescription registries on the duration of drug expo-

sure that should be assigned to a single fill,1 potentially affecting study

validity due to exposure misclassification.2

A range of different methods have been applied in the attempt to

assign durations to prescriptions. One approach is the assumption of

patients using a fixed daily dose such as the defined daily dose

(DDD), a standardized value assigned by the WHO.3 In other cases,

prescription durations are estimated based on clinical assumptions,

eg, patients taking 1 tablet of statin therapy per day. Both approaches

are especially problematic for drugs with large interindividual variation

in daily dosages, such as the oral anticoagulant warfarin.2

We have recently proposed new methods to estimate prescrip-

tion durations based on a reverse parametric waiting time distribution

(rWTD)4 and how this method allows inclusion of observed drug and

patient characteristics as covariates.5

In this paper, we aimed to validate 2 different types of approaches

for estimating prescription durations for warfarin: (1) assuming a daily

intake of either 1.0 DDD or 0.5 DDD and (2) using the rWTD without

covariates and with 3 different models of drug and patient character-

istics as covariates. The empirical validation consisted of a comparison

of the estimated daily doses to data on actual prescribed daily doses of

warfarin obtained from a clinical anticoagulation registry, which we

term the gold standard.6 We assessed the performance of the

methods with regards to relative error (bias) and variation in errors.
2 | MATERIAL AND METHODS

The study was an empirical validation of 2 different approaches for

estimating the prescription duration of warfarin. We converted these

estimates to daily doses and compared them to actual daily doses of

warfarin collected from a clinical anticoagulation registry using

Bland‐Altman plots.
2.1 | Data sources

We collected prescribed daily doses of warfarin from the clinical reg-

istry Thrombobase and linked these to prescription fills obtained from

the Odense University Pharmacoepidemiological Database (OPED).7

The linkage was enabled by using the Danish Civil Registration Num-

ber System covering individual identification numbers on all residents

in Denmark.8 Thrombobase is a clinical anticoagulation database,

which includes information about prescribed warfarin dose, interna-

tional normalized ratio (INR) measurements, and treatment indication

for patients receiving vitamin K‐antagonist therapy from 3 outpatient

clinics at Odense University Hospital and 50 general practitioners

from the former county of Funen.9 The prescribed warfarin dose is

adjusted according to values of INR, which is measured at every

patient visit and recorded in the database together with the dose.

The prescription database OPED covers information on redeemed

and reimbursed prescriptions from parts of Denmark, including

Funen.7 For every prescription, the number of redeemed packages,
the date of redemption, and drug strength are recorded, among other

variables. As with other Nordic prescription databases,1 dosing

instructions and prescription durations are not recorded in OPED.7
2.2 | The waiting time distribution

The WTD concept was initially suggested by Hallas et al in 199710 as a

graphical approach based on a frequency distribution of each patient's

first filling of a particular drug within a specific time interval. The WTD

enables a distinction between 2 components corresponding to inci-

dent and prevalent users, respectively. In the absence of seasonal var-

iation in incidence, incident users will redeem their first redemption

uniformly throughout the study window, which results in a constant

component of the WTD. By contrast, prevalent users will redeem

new prescriptions in the beginning of the study period. In 2016,

Støvring et al11 proposed an algorithm based on a parametric model

leading to the development of the parametric WTD model which

enabled estimation of prescription durations for prevalent users. In

brief, the model is based on renewal process theory which identifies

the prevalent component of the WTD as a forward recurrence density

(FRD), ie, the decreasing density of the distribution observed in the

beginning of the time window. Based on an estimate of the FRD, it

is possible by a simple mathematical transformation to estimate per-

centiles of the associated inter‐arrival density (IAD).11 Subsequently,

Støvring et al4 proposed a reversed model, in which the last (instead

of the first) prescription fill of each patient within a time interval is

considered, ie, the rWTD. The prevalent component of the rWTD is

a backward recurrence density (BRD) resulting in a shape of the rWTD

being mirrored compared with the ordinary WTD. In renewal pro-

cesses, the BRD and the FRD coincide, and Støvring et al4 showed

that the theoretical agreement was also found in applications to real‐

world data. Percentiles of the IAD may be obtained using similar algo-

rithms as for the original parametric WTD. Furthermore, an extension

to the rWTD has been proposed to include in the estimation specific
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patient and drug characteristics such as sex, age, or number of tablets

filled as covariates.5

2.3 | Reference sample and dose (gold standard)

We identified all patients registered in Thrombobase from 1998 to

2010. We disregarded the first 4 months of follow‐up for all treatment

episodes (as recorded inThrombobase), as INR values are known to be

unstable early after treatment initiation.12 From the remaining treat-

ment episode, we chose a random prescription fill for each patient in

OPED and identified the most recent previous patient visit recorded

in Thrombobase. Data about the prescribed dose at this specific visit

yielded the daily warfarin dose, which we considered as the reference

value (ie, the gold standard) in the analysis.

2.4 | Estimation of drug duration

We examined 2 different types of approaches for the estimation of

prescription durations for warfarin. These were based on DDD values

(assuming either 1.0 DDD [7.5 mg] or 0.5 DDD [3.75 mg] per day) and

the rWTD approach without covariates as with 3 different sets of drug

and patient covariates. We did not include estimations based on the

original parametric WTD, as this has been shown in a previous study

to yield results similar to the rWTD.4 All prescription durations

obtained from the rWTD approach were converted into estimated

daily doses to enable comparison with actual daily doses of warfarin

collected from Thrombobase. We used the following equation for

the conversion:
Package size · Number of packages·drug strength mgð Þ
prescription duration daysð Þ ¼ daily dose mg=dayð Þ
In Denmark, warfarin is only available in packages of 100 tablets,

each containing 2.5 mg. However, no restriction exists on the number

of packages that can be obtained per prescription fill. For chronic

treatments, an amount corresponding to approximately 3 months of

treatment is usually prescribed. The number of packages redeemed

is recorded in OPED.13

We implemented the DDD approach in this study by including

assumptions of intake of 1.0 DDD, corresponding to 7.5 mg warfarin

per day,3 and intake of 0.5 DDD (3.75 mg), a value that has been

applied in previous studies.14 As this approach directly yields the daily

dosage of warfarin, no further conversion was carried out before com-

parison with data from Thrombobase.
Limit of agreement ratio ¼ exp δþ 1:96·SD− δ−1:96·SDð Þð Þ ¼ exp 3:92·SDð Þ
The rWTD approach without covariates was implemented in the

study as estimated prescription durations by using the calendar year

2004 (mid‐study period) as time window. From users of warfarin

within 2004, we identified the latest redeemed prescription using
dispensing information from OPED. We used a Log‐Normal BRD,

which implies that the corresponding IAD is a Log‐Normal distribution

with parameters μ and σ, which are the mean and standard deviation

(SD) of the time to next prescription redemption for prevalent users

on the log‐scale. This implies that the k'th percentile of the IAD is

given by exp(Φ−1(k)σ + μ), where Φ(·) is the standard normal cumula-

tive distribution function. Similarly, the mean of the IAD is given by

exp μþ 1
2
σ2

� �
. From these expressions, we calculated the 50th,

60th, 70th, 80th, 90th percentile and the mean of the IAD.4,5

For the rWTD with covariates, we used a similar time window as

for the rWTD without covariates. We again used a Log‐Normal BRD,

and the 50th, 60th, 70th, 80th, 90th percentiles and mean of the IAD

were consequently estimated from similar expressions, except that

the parameters μ and σ now depended on individual covariates. We

included 3 sets of covariates leading to 3 different models of the

rWTD. The first model included sex and continuous age, the second

further included number of packages, while the third and final model

also included “time since last redemption” (continuous in days).
2.5 | Analysis

We compared the daily doses of warfarin estimated from the 2

approaches outlined above with actual daily doses fromThrombobase

using Bland‐Altman plots.15,16 These plots provide a graphical presen-

tation of the difference between the estimated dose and actual dose

on a logarithmic scale plotted against mean values of the estimated
dose and actual dose on a logarithmic scale. For each method, we

computed the average difference between predicted and actual dose

on the logarithmic scale and reported it in percentage as the relative

difference is on the original scale. If we, eg, find a difference of 0.5

on the logarithmic scale, we report this as a (exp(0.5) − 1) = 64.8%

relative difference. As customary for Bland‐Altman analyses, we also

computed the so‐called limits of agreement, which are defined as

the average difference δ ± 1.96 SD, also computed on the logarithmic

scale. To facilitate comparisons of methods, we summarized variation

by reporting of the ratio of the upper limit of agreement to the lower

limit, both back‐transformed to the original scale. A smaller ratio indi-

cates a more precise prediction of dose on the individual level.
2.6 | Sensitivity analysis

As sensitivity analyses, we first changed the method used for deter-

mining actual daily warfarin doses in the reference sample. This was
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carried out by calculating the mean value of dosages within a time

interval of 6 months for each patient (instead of using the dose from

the randomly selected dispensing). Second, we applied a different

sampling approach redefining the index date to the first prescription

within the treatment episode (instead of a random prescription) while

still disregarding the first 4 months of each treatment episode.
2.7 | Other

All analyses were performed using STATA Release 14.2 (StataCorp,

College Station, TX, USA). According to Danish law, ethical approval

is not required for registry‐based studies.
3 | RESULTS

In the reference sample, we included 2848 warfarin users, which were

registered in Thrombobase from 1998 to 2010. Of these, 62%

(n = 1778) were males, the median age was 69 years (interquartile

range (IQR), 58‐77), and the main indication for warfarin treatment

was atrial fibrillation (59%) followed by venous thromboembolism

(18%) and heart valve disorder (16%). The daily doses of warfarin

among the users in the reference sample, as recorded inThrombobase,
FIGURE 1 Distribution of prescribed daily doses (mg) of warfarin
among 2848 included patients in the reference sample, as recorded
in Thrombobase

(A)

FIGURE 2 Bland‐Altman plots comparing estimated daily dose of warfari
(3.75 mg; part B) to prescribed daily doses as recorded in Thrombobase (go
scale, which, when back‐transformed corresponds to the median relative d
upper and lower limit of agreement
displayed a right‐skewed distribution (Figure 1) with a median dose of

4.82 mg (IQR: 3.39‐6.43) and a mean dose of 5.17 (SD 2.46).

Bland‐Altman plots from the validation of the DDD approaches

showed a straight line, due to the fixed assumption of either 1 DDD

(7.5 mg) or 0.5 DDD (3.75 mg) as daily dose (Figure 2). The assumption

of 0.5 DDD showed a relative difference of −19%, indicating that the

warfarin dose was underestimated, corresponding to an overestima-

tion of the exposure duration. Similarly, the assumption of 1.0 DDD

led to a relative difference of 62%. Both DDD assumptions showed

a limit of agreement ratio of 6.721 (see footnote to Table 1).

Results from the validation of the rWTD approach without and

with 3 models of covariates are presented in Table 1. For each model,

we applied the 50th, 60th, 70th, 80th, 90th or the mean of IAD for esti-

mating the daily dose of warfarin. Estimations based on the 60th per-

centile and the mean of IAD showed the lowest relative difference of

0% to 2%. When the 50th percentile of the IAD was applied, the rela-

tive difference increased indicating an overestimation of the warfarin

dose, thus underestimating the drug exposure duration. Conversely,

the exposure duration became overestimated when the 70th, 80th,

and 90th percentiles were applied. The limit of agreement ratio

decreased from the rWTD without covariates (6.867) to the final

model of full covariate adjustment of rWTD (4.036), indicating a

reduced variability of predictions on the individual level when covari-

ates were included in the prediction model.

We present only Bland‐Altman plots from the estimations based

on the mean of IAD (Figure 3), with plots from the 50th and 80th per-

centile presented in the supplementary appendix. The plot for the

rWTD without covariates displayed a relative difference of 0%

(−62% to 162%) and parallel lines, which correspond to warfarin users

redeeming different numbers of packages. In the basic model of the

rWTD, the relative difference was 1% (−60% to 155%), and, although

some variation was seen (from age and sex), some banded stripes

remained reflecting the small number of different prediction values.

When we additionally adjusted for the number of packages filled in

the rWTD medio model, the clustered pattern was nearly eliminated.

This model showed a relative difference of 2% (−57% to 146%). The

final model had an almost similar pattern, but with a more horizontal

spread which indicates that bias in predictions did not depend on

the size of the daily dose. The relative difference was 2% (−49% to

104%).
(B)

n using the assumption of either 1.0 DDD (7.5 mg; part A) or 0.5 DDD
ld standard). The black lines denote the average difference on the log
ifference (provided in the parenthesis). The dashed lines denote the



TABLE 1 Comparison of the recorded daily dose (reference sample) and the estimated daily doses. The results are displayed as relative differ-
ences (on original scale) in percentage including the 95% CI of the limit of agreement

Relative Difference Limit of Agreements Limit of Agreement Ratioa

DDD assumptions

1.0 DDD 62% −38% to 319% 6.721

0.5 DDD −19% −69% to 110% 6.721

rWTD (without covariates)

50th percentile of IAD 15% −56% to 200% 6.857

60th percentile of IAD 0% −62% to 163% 6.857

70th percentile of IAD −13% −67% to 128% 6.857

80th percentile of IAD −26% −72% to 93% 6.857

90th percentile of IAD −41% −78% to 53% 6.857

Mean of IAD −0% −62% to 162% 6.857

Basic rWTD‐model including sex and continuous age as covariates

50th percentile of IAD 15% −54% to 191% 6.394

60th percentile of IAD 1% −60% to 155% 6.388

70th percentile of IAD −12% −65% to 122% 6.382

80th percentile of IAD −25% −70% to 88% 6.375

90th percentile of IAD −41% −76% to 50% 6.365

Mean of IAD 1% −60% to 155% 6.382

Medio rWTD‐model including sex, continuous age, and number of redeemed packages as covariates

50th percentile of IAD 15% −52% to 176% 5.787

60th percentile of IAD 2% −58% to 145% 5.781

70th percentile of IAD −11% −63% to 115% 5.777

80th percentile of IAD −23% −68% to 84% 5.775

90th percentile of IAD −38% −74% to 49% 5.776

Mean of IAD 2% −57% to 146% 5.778

Final rWTD‐model including sex, continuous age, number of redeemed packages, and “time since last redemption” (continuous in days) as covariates

50th percentile of IAD 12% −44% to 122% 3.952

60th percentile of IAD 0% −50% to 100% 3.996

70th percentile of IAD −11% −56% to 79% 4.059

80th percentile of IAD −22% −62% to 58% 4.153

90th percentile of IAD −36% −69% to 34% 4.321

Mean of IAD 2% −49% to 104% 4.036

Abbreviations: IAD, inter‐arrival density; rWTD, reverse waiting time distribution.
aWhen a method predicts the same dose for all individuals, it can be shown that the limit of agreement ratio is constant irrespective of the value of the
prediction. This is the reason that the 2 DDD methods have identical limit of agreement ratios. The reason that the rWTD model without covariates does
not return the same limit of agreement ratio is that the rWTD model estimates a fixed duration of a prescription, thereby yielding different estimates of
daily dose when different number of packages are filled.
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The results of the sensitivity analysis using a weighted average

prescribed dose for comparison (Supplementary Figure 1) or using

the first eligible prescription instead of a random prescription (Supple-

mentary Figure 2) yielded estimates comparable to the main analysis.
4 | DISCUSSION

The study demonstrated that using the rWTDapproach to estimate pre-

scription durations by themean of the IAD resulted in estimates of daily

dose which had on average negligible bias relative to the prescribed

daily dose. This was in contrast to conventional approaches based on

a fixed daily intake of, eg, 0.5 or 1.0 DDD of warfarin which both

showed substantial bias. When we further incorporated covariates to

the rWTD approach, the precision of the estimated daily doses on the
individual level improved markedly, as seen from the decreasing limit

of agreement ratio obtained with increasing covariate adjustment.

The main strength of our study is the use of real‐world prescrip-

tion data coupled to a useful gold standard of prescribed daily doses

recorded in Thrombobase, which allows us to validate the usefulness

of the DDD and rWTD‐based approaches in a realistic epidemiological

setting. BothThrombobase and OPED provide nearly complete follow‐

up of all relevant subjects over extended periods of time.7,9

The study also has limitations. The primary limitation is the reli-

ance on prescribed daily dose as gold standard, because patients

may not accurately follow the prescribed dose regime. However, any

method based solely on observations in a prescription database can-

not be expected to yield absolutely accurate information at the level

of individual patients. Rather, the objective when using this type of

data must be to obtain estimates of prescription duration unbiased



(A) (B)

(C) (D)

FIGURE 3 Bland‐Altman plots comparing daily doses estimated using the rWTD approach to prescribed daily doses as recorded inThrombobase
(gold standard). The first model (A) did not include covariates. The basic model (B) included sex and age (continuous) as covariates. The medio
model (C) included sex, age, and number of redeemed packages as covariates. The full model (D) included sex, age, number of redeemed packages,
and “time since last redemption” (continuous in days) as covariates. rWTD estimates were predicted using the mean of the interarrival density
(IAD). The black lines denote the average difference on the log scale, which, when back‐transformed corresponds to the median relative difference
(provided in the parenthesis). The dashed lines denote the upper and lower limit of agreement
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at the population level and with the smallest possible error variation.

From this perspective, wewould anticipate that if a method could provide

an unbiased estimate of the average duration of a prescription among

patients in active treatment, such a method would likewise provide unbi-

ased estimates of daily doses. Reassuringly, this is indeed what we find

when using the rWTD‐based mean estimates, even though predictions

suffer from error at the individual level. Of note, this study specifically

excluded the first 4months of each patients' treatment episode, to ensure

that a stable phase of warfarin treatment had been reached.12 Thereby,

the results do not necessarily reflect recently initiated treatment. A fur-

ther limitation is that we only have access to prescriptions redeemed at

pharmacies, which implies that medication obtained from and during hos-

pitalizations are not recorded.However, in‐hospital use ofwarfarin is very

limited,17 and we thus expect this misclassification to be minor.

The use of warfarin as a case needs to be discussed. The close

monitoring and documentation hereof is a property of warfarin treat-

ment that permits us to use these data to assess the validity of the

rWTD estimates of prescription durations. However, such monitoring

also means that the contribution from non‐compliance to prescription

durations is likely smaller for this drug than for other drugs. Regard-

less, the large interindividual variation in daily dose of warfarin makes

it particularly challenging to estimate durations for this drug. The fact

that the rWTD algorithm performs well under such difficult circum-

stances suggests that it can be useful for a wide range of drug classes.

The substantial bias revealed for the 1.0 DDD assumption is most

likely explained by the known discrepancy between the DDD value for

warfarin as determined by the WHO (ie, 7.5 mg) and the actual aver-

age daily dose of warfarin as used in clinical practice,2 which in this

study was found to be 4.8 mg. The DDD approach is expected to
perform better for drugs with better concordance between the DDD

value and the actual daily dose.

Other studies have attempted to validate methods for estimating

prescription duration or, more or less equivalently, daily dose.

Recently, Taipale et al18 compared treatment status derived with the

“prescription drug purchases to drug use periods” (PRE2DUP) method

in a cohort of older persons and found good agreement.19 Meid

et al20,21 compared an individual estimation of drug coverage (COV),

in which estimations are based on averaged fraction of prescribed

doses from longitudinal prescription history, to real data and found it

preferable over the DDD approach. It should, however, be noticed

that estimation of treatment status is to a certain extent a simpler task

than obtaining an unbiased estimate of daily dose.

At its core, modern pharmacoepidemiology often relies on observa-

tions of prescription as recorded in large‐scale databases, and thus it

remains a fundamental problem to infer how a drug is used based on

such data. Ideally, we would for each patient like to know on any given

day the dose that was taken. As this is unrealistic, the objective must be

to provide optimal predictions based on observed data, ie, predictions

with minimal bias and error variation. Improved precision in predictions

can be expected to confer improved statistical precision and validity in

studies where drug use is the exposure of interest.4,5 Most methods

to estimate drug use have been based on decision rules with clinical

input or elaborate algorithms, whereas methods based on an explicit

statistical model are scarce. Our validation study shows that in a setting

where most users of the drug continue treatment and can be expected

to comply with dose instructions, the rWTD method estimates what it

would be expected to from a theoretical perspective.4 The distinctive

feature of the different WTD approaches is that they all rely on
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identifying the forward or backward recurrence distribution which cor-

responds to users in continued treatment.4,11 With the addition of

covariates in the rWTD, this distribution can be made more specific to

improve precision in predictions.5 Still, the present study shows that

precision at an individual level is low with the covariates used here

(age, sex, number of packages, and time since last redemption). We

are not aware of covariateswhich could be expected to have substantial

predictive power apart from these. Future research could both focus on

identifying important predictors to be included in the model and per-

form similar validation studies for other drug classes and patient groups.

Such validation studies should also include comparisons with other

recent suggestions such as the PRE2DUP algorithm and the COV

approach,18,20 although this is complicated by the fact that these

approaches require some expert input. By contrast, theWTD approach

only relies on standard statistical modeling techniques, and its fit can

therefore be assessed with standard diagnostic techniques.

The validity of these algorithms relates to the subject of exposure

misclassification. Having specified too long treatment periods to single

prescription will have little effect on most treatment episodes, as the

overlap between consecutive prescriptions is usually disregarded. Too

short durations, on the other hand, will lead to unduly segmented treat-

ment episodes with frequent artificial gaps.22 Misclassification is likely to

be non‐differential, usually generating a weak or moderate bias towards

the null. In self‐controlled designs, however, such bias can be substantial,

even with low degrees of misclassification,23 and drug survival analyses

are also highly sensitive to assumptions about prescription durations.24

In summation, we have provided an empirical validation of WTD‐

based approaches to estimate prescription durations using warfarin as

case. We found that the rWTD‐based approaches outperformed the

simple approaches assuming a fixed daily intake, with negligible bias

at the aggregate level and improved precision at the individual level.

However, even when including covariates in the rWTD model, sub-

stantial variation in predictions remained. The use of these new

methods in future pharmacoepidemiological studies, facilitated by

available STATA implementations of the algorithm, will show how best

to utilize them and, ultimately, how they will fit into the

pharmacoepidemiological methods armamentarium.
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